304 research outputs found

    Resonances and adiabatic invariance in classical and quantum scattering theory

    Full text link
    We discover that the energy-integral of time-delay is an adiabatic invariant in quantum scattering theory and corresponds classically to the phase space volume. The integral thus found provides a quantization condition for resonances, explaining a series of results recently found in non-relativistic and relativistic regimes. Further, a connection between statistical quantities like quantal resonance-width and classical friction has been established with a classically deterministic quantity, the stability exponent of an adiabatically perturbed periodic orbit. This relation can be employed to estimate the rate of energy dissipation in finite quantum systems.Comment: 8 page

    Larmor precession and tunneling time of a relativistic neutral spinning particle through an arbitrary potential barrier

    Get PDF
    The Larmor precession of a relativistic neutral spin-1/2 particle in a uniform constant magnetic field confined to the region of a one-dimensional arbitrary potential barrier is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle traversing a potential barrier. With the help of general spin coherent state it is explicitly shown that the precession time is equal to the dwell time.Comment: 10 pages, 1 figure. To be published in Phys. Rev. A (01 February 2002

    Tunneling Time Distribution by means of Nelson's Quantum Mechanics and Wave-Particle Duality

    Get PDF
    We calculate a tunneling time distribution by means of Nelson's quantum mechanics and investigate its statistical properties. The relationship between the average and deviation of tunneling time suggests the exsistence of ``wave-particle duality'' in the tunneling phenomena.Comment: 14 pages including 11 figures, the text has been revise

    Environmentalism, performance and applications: uncertainties and emancipations

    Get PDF
    This introductory article for a themed edition on environmentalism provides a particular context for those articles that follow, each of which engages with different aspects of environmentalism and performance in community-related settings. Responding to the proposition that there is a lacuna in the field of applied drama and environmentalism (Bottoms, 2010), we suggest that the more significant lack is that of ecocriticism. As the articles in this journal testify, there are many examples of applied theatre practice; what is required is sustained and rigorous critical engagement. It is to the gap of ecocriticism that we address this issue, signalling what we hope is the emergence of a critical field. One response to the multiple challenges of climate change is to more transparently locate the human animal within the environment, as one agent amongst many. Here, we seek to transparently locate the critic, intertwining the personal – ourselves, human actants – with global environmental concerns. This tactic mirrors much contemporary writing on climate change and its education, privileging personal engagement – a shift we interrogate as much as we perform. The key trope we anchor is that of uncertainty: the uncertainties that accompany stepping into a new research environment; the uncertainties arising from multiple relations (human and non-human); the uncertainties of scientific fact; the uncertainties of forecasting the future; and the uncertainties of outcomes – including those of performance practices. Having analysed a particular turn in environmental education (towards social learning) and the failure to successfully combine ‘art and reality’ in recent UK mainstream theatre events, such uncertainties lead to our suggestion for an ‘emancipated’ environmentalism. In support of this proposal, we offer up a reflection on a key weekend of performance practice that brought us to attend to the small – but not insignificant – and to consider first hand the complex relationships between environmental ‘grand narratives’ and personal experiential encounters. Locating ourselves within the field and mapping out some of the many conceptual challenges attached to it serves to introduce the territories which the following journal articles expand upon

    Partial Densities of States, Scattering Matrices, and Green's Functions

    Full text link
    The response of an arbitrary scattering problem to quasi-static perturbations in the scattering potential is naturally expressed in terms of a set of local partial densities of states and a set of sensitivities each associated with one element of the scattering matrix. We define the local partial densities of states and the sensitivities in terms of functional derivatives of the scattering matrix and discuss their relation to the Green's function. Certain combinations of the local partial densities of states represent the injectivity of a scattering channel into the system and the emissivity into a scattering channel. It is shown that the injectivities and emissivities are simply related to the absolute square of the scattering wave-function. We discuss also the connection of the partial densities of states and the sensitivities to characteristic times. We apply these concepts to a delta-barrier and to the local Larmor clock.Comment: 13 pages (revtex), 4 figure

    Unified time analysis of photon and (nonrelativistic) particle Tunnelling, and the Superluminal group-velocity problem

    Get PDF
    A unified approach to the time analysis of tunnelling of nonrelativistic particles is presented, in which Time is regarded as a quantum-mechanical observable, canonically conjugated to Energy. The validity of the Hartman effect (independence of the Tunnelling Time of the opaque barrier width, with Superluminal group velocities as a consequence) is verified for ALL the known expressions of the mean tunnelling time. Moreover, the analogy between particle and photon tunnelling is suitably exploited. On the basis of such an analogy, an explanation of some recent microwave and optics experimental results on tunnelling times is proposed. Attention is devoted to some aspects of the causality problem for particle and photon tunnelling.Comment: plain (old) LaTeX; 42 pages; plus figures 1, 2, 3, 4a, 4b, and
    • 

    corecore